A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells.
نویسندگان
چکیده
Oscillations of both p53 and MDM2 proteins have been observed in cells after exposure to stress. A mathematical model describing these oscillations predicted that oscillations occur only at selected levels of p53 and MDM2 proteins. This model prediction suggests that oscillations will disappear in cells containing high levels of MDM2 as observed with a single nucleotide polymorphism in the MDM2 gene (SNP309). The effect of SNP309 upon the p53-MDM2 oscillation was examined in various human cell lines and the oscillations were observed in the cells with at least one wild-type allele for SNP309 (T/T or T/G) but not in cells homozygous for SNP309 (G/G). Furthermore, estrogen preferentially stimulated the transcription of MDM2 from SNP309 G allele and increased the levels of MDM2 protein in estrogen-responsive cells homozygous for SNP309 (G/G). These results suggest the possibility that SNP309 G allele may contribute to gender-specific tumorigenesis through further elevating the MDM2 levels and disrupting the p53-MDM2 oscillation. Furthermore, using the H1299-HW24 cells expressing wild-type p53 under a tetracycline-regulated promoter, the p53-MDM2 oscillation was observed only when p53 levels were in a specific range, and DNA damage was found to be necessary for triggering the p53-MDM2 oscillation. This study shows that higher levels of MDM2 in cells homozygous for SNP309 (G/G) do not permit coordinated p53-MDM2 oscillation after stress, which might contribute to decreased efficiency of the p53 pathway and correlates with a clinical phenotype (i.e., the development of cancers at earlier age of onset in female).
منابع مشابه
مطالعه ارتباط لوسمی حاد لنفوئیدی و پلی مورفیسم پروموتر ژن MDM2(SNP309) در بیماران استان خوزستان
Background & Aims: Leukemia is a type of malignancy of the hematopoietic tissue that accompanies the incomplete development and proliferation of white blood cells. In acute lymphoid leukemia (ALL), many lymphocytes that have not yet completely evolved, are impaired and increasingly found in peripheral blood and bone marrow. MDM2 is a proto-oncogene with E3 ubiquitin ligase activity that acts as...
متن کاملA 40-bp Insertion/Deletion Polymorphism of Murine Double Minute2 (MDM2) Increased the Risk of Breast Cancer in Zahedan, Southeast Iran
Background: MDM2 (Murine Double Minute2) is an oncoprotein that inhibits the P53 activity. Overexpression of MDM2 gene has been reported in several human tumors. In the present study, we aimed to evaluate the impact of 40-bp insertion/deletion (ins/del) polymorphism on the promoter of MDM2 and susceptibility to breast cancer in a sample of Iranian population. Methods: This case-control study wa...
متن کاملRelevant Allelic Frequency of Gene Polymorphism and Genetic Predisposition of Human Papillomavirus in Patients with Cervical Cancer
Backround: The present study investigated the correlation between p53 gene codon 72 polymorphism and 6 other genetic single nucleotide polymorphisms (SNPs) in patients with cervical cancer infected by HPV. Methods: 450 patients with cervical cancer (280 Squamous cell carcinoma and 170 Adenocarcinoma) were followed at hospitals in Iran from Dec. 2014 to Apr. 2015. Moreover, 100 age/sex-matche...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملCelecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells
Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2 e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 6 شماره
صفحات -
تاریخ انتشار 2007